This record is being processed for inclusion into GeoRef. It may not yet have been indexed, given a translated title, or checked by a GeoRef editor.

Observed and modeled mercury and dissolved organic carbon concentrations and loads at control structure S-12D, Florida Everglades, 2013-17

Saved in:
Online Access: Get full text
doi: 10.3133/ofr20201092
Authors:Booth, Amanda; Poulin, Brett A.; Krabbenhoft, David P.
Author Affiliations:Primary:
U. S. Geoological Survey, United States
Source:Open-File Report - U. S. Geological Survey, No.OF2020-1092, 27p. Publisher: U. S. Geological Survey, Reston, VA, United States. ISSN: 0196-1497
Publication Date:2020
Note:In English. Includes appendices; includes link to USGS data release. 40 refs.
Summary:Mercury (Hg) has been a contaminant of concern for several decades in South Florida, particularly in the Florida Everglades. The transport and bioavailability of Hg in aquatic systems is intimately linked to dissolved organic carbon (DOC). In aquatic systems, Hg can be converted to methylmercury (MeHg), which is the form of Hg that bioaccumulates in food webs. The bioaccumulation of MeHg poses significant health risks to wildlife and humans. Fish consumption advisories triggered by elevated Hg levels first appeared in the 1980s in South Florida. Multiple structures regulate freshwater distribution to Everglades National Park, including S-12D. This report summarizes seasonal and annual concentration and load data from late September 2013 to April 2017 for the total of (1) filter-passing total mercury (FTHg), (2) filter-passing methylmercury (FMeHg), (3) particulate total mercury (PTHg), (4) particulate methylmercury (PMeHg) and, (5) DOC discharged through control structure S-12D. The loads of Hg fractions and DOC at control structure S-12D were determined by pairing discharge data with constituent concentrations estimated by empirical models based on surrogate in situ water-quality measurements. Calculated concentrations of DOC ranged from 12.8 milligrams per liter (mg/L) to 27.9 mg/L with a mean of 18.8 mg/L during the study period. Annual loads of DOC ranged from 3,950 tons in 2015 to 10,900 tons in 2016. DOC loads increased linearly with an increase in flow, and the highest monthly DOC load of 1,630 tons was observed in February 2016. Calculated concentrations of FTHg ranged from 0.35 to 1.55 nanograms per liter (ng/L) with a mean of 0.85 ng/L during the study period. Calculated concentrations of FMeHg ranged from 0.06 ng/L to 0.24 ng/L with a mean of 0.14 ng/L during the study period. Generally, FTHg and FMeHg con-centrations were lower during periods of decreased flow and higher during periods of increased flow. Calculated PTHg concentrations ranged from 0.09 ng/L to 4.19 ng/L with a mean of 0.58 ng/L during the study period. Calculated PMeHg concentrations ranged from below the limit of detection <0.01 ng/L to 0.29 ng/L with a mean of 0.03 ng/L during the study period. Loads of Hg were often zero or lowest from November to May, owing to the lack of flow or low-flow conditions. FTHg and FMeHg loads increased linearly with an increase in flow and typically were highest from June to October. During periods of increasing flow or following changes in gate operations, PTHg and PMeHg constituted a greater percentage of the total Hg load. Annual loads of total Hg (filter-passing and particulate) ranged from 254 grams in 2015 to 658 grams in 2016. FTHg was the predominant contributor to the total Hg load. Information presented herein provides the first assessment of DOC and Hg loads to Everglades National Park through control structure S-12D using continuous in situ measurements of discharge and constituent surrogates and compares the sur-rogate model approach to loads calculated from monthly sam-pling. Analysis of calculated and observed loads demonstrates the significance of flow data on calculating constituent loads.
Subjects:Carbon; Mercury; Metals; Methylmercury; Organic carbon; Organo-metallics; Pollution; Solutes; Water pollution; Water quality; Everglades; Florida; United States
Coordinates:N250000 N260000 W0790000 W0810000
Record ID:893497-1
Copyright Information:GeoRef, Copyright 2021 American Geosciences Institute.
Tags: Add Tag
No Tags, Be the first to tag this record!